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RADIATION PATTERN OF RAYLEIGH WAVES FROM A FAULT OF
ARBITRARY DIP AND DIRECTION OF MOTION IN A
HOMOGENEQOUS MEDIUM

By N. A. HaskeLL

ABSTRACT

Expressions for the displacements in the body waves radiatéd in sxr unbounded, homogeneous
elastic medium by dipolar point sources of arbitrary orientation may bé readily derived in
Cartesian coordinates from formulae given by Love. The free-surface boundary conditions
are, however, most conveniently expressed in terms of Sezawa’s cylindrieal wave. functions.
The necessary transformation between the two representations is provided by the Sommerfeld
integral and others that may be derived from it by differentiati~ns with respect to the radial
and axial (vertical) coordinates. By this means the total radiation field (direet plus surface
reflected) is expressed in terms. of integrals of cylindrical wave functions. The Rayleigh wave
component may then be separated out by caleulating the residue at the Rayleigh pole of the
integrand. The azimuthal dependence of the Rayleigh wave displacements appears as the sum
of three terms, one independent of the azimuth angle, ¢, another depending upon gin ¢ and
cos ¢, and a third depending upon sin 2¢ and cos. 2p. The coefficients of these terms are func-
tions of the direction cosines of the normal to the fault. platie-and the direction of the relative
displacement vector in the fault plane. Equations are presented :or sources of both single and
double couple types. The effect of fault propagation with finite velocity over a finite distance
may be included by multiplying these.expressions by the finite source factor previously derived
by Ben-Menahem.

Polar plots of the amplitude and initial phase are presanted for single and double-couple
representations of & number of different types of faults. It is noted that for one certain orien-
tation a shallow double-couple source generates no Rayleigh waves.

INTRODUCTION

Ben-Menahem (1961) has recently treated the radiation of seismic surface
waves from moving single-couple sources representing dip-slip and strike-slip-
faults. The case of arbitrary direction of motion in the fault plane can be treated by
resolving the displacement into dip-slip and strike-slip components and superim-
posing the solutions for these two special cases, but it is also possible to derive
general expressions, allowing the normal to the fault plane and the direction of
motion in the fault plane to be arbitrary orthogunal vectors from the beginning,
which will exhibit the dependence of the radiation pattern on these vectors some-
what more explicitly. We shall begin with a representation of the elastic wave
radiation field of point sources in terms of spherical wave functions in Cartesian
coordinates and then, by means of the Sommerfeld integral and its derivatives,
transform this into a representation in terms of cylindrical wave funetions, The
free-surface boundary conditions are then imposed and the Rayleigh wave com-
ponents are separated by taking the residues at the Rayleigh pole.

CARTESIAN. REPRESENTATION oF DIPoLAR PoOINT SOURCES

In tensor notation the elastic wave displacement vector with Cartesian com-
ponents u;, due to a point force with components. F;(¢) may be written (Love,
1944) in the form
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‘ RIB
drpu; = R™°(39:v; — 8i7) ./I;/a. tFi(t — ¢)dt + viv;iFi(t — R/a)/e'R 1
— (viv; — 8:;)Fi(t — R/B)/BR

The convention of summation over repeated dummy indices is to be understood
and the following notation is used:

p = density

« = compressional wave velocity

8 = shear wave velocity .

v: = direction cosine of line from source to field point
(x: — /) /R

z; = Cartesian coordinate of field point
z = Cartesian coordinate of source
R = radial distance of field point from source
3,’3‘ = 0, ’L # j
=li=j

Following Keilis:Borok (1950), equation (1) may be written in a more symmetrical

form by introducing the second integral of the force, J(1), i.e., F(t) = J”(t). The

integral may then be evaluated and equation (1) becomes
dmpu; = (3vav; — 8)Ji(t — B/2) /B + (Bvevi — 0:5)JS/(t — R/a)/eR’
+ vyl (¢ — Rfa)/a’R —[(3vay; — 8:) it — R/B)/R’ (2)
+ (Bvar; — 8:)J/ (t — R/B)/BE" + (yar; — 8:)J{" (¢ — B/B)/EE]
To obtain the displacements due to dipolar point sources, we need the first -deriv-
atives, u;, = O0u;/dz, . From the definitions we have oR/dxr = i, dyi/dxr =

(8 — vovu)/R, and 9J;(t — R/a)/0xr = —vJ /(¢ — R/a)/a. Using these rela-
tions we find

dmpuie = Ji(t — R/a)[8(vdsn + v + vdi;) — 5yavsvil/R
+ J/(t — R/2)[B(vdn + vida + wdi) — 15yivivel/aR’
+ J7(t — B/a) b + vida + nibi; — Gyavsvil/ B’
— It~ R/ vermn/dR
— Ji(t — B/B)[B(yids + 7,0 + ibis) — 15vavmil/R' @
— J/(t — R/B)B(vdin + vida + mbis) — 15vivsv.l/BR’
— Ji"(t — R/B) [y + vidba + 2vids; — Gvrvsvel /BB’
+ J”(t — R/B) lveveve — vidi)/B°R
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RADIATION PATTERN OF RAYLEIGH WAVES 621

We now assume that J; = —(f;/o’) exp (iwt), where f; is a unit vector in the
direction of F;, so that F; = J;” = f; exp {(iwt) for & couple of unit moment.
Omitting the ecémmon time factor, equation (8) becomes

drouip = fiB exp (—iwR/a)[(3/R%) (vida + vibu + wids; — Bysysve)

+ (Biw/aB”) (vije + vida + vidii — Svrvsve)

+ (/R) (Bravive — vidis — vida — Widss) + (i’ fed)vevim] (4
+ fiR ™ exp. ( —in/ﬁ)[(3/ RY (v + vida + mibis — Bvavime)

+ (3iw/BRY) (vida + vibu + wdi; — Bvavim)

+ (" /BR)(Bravsve — ¥idi — Vb — 2vibig) + (1”8 (vrvime — widis)]

Let n; be & unit, vector normal t6 the fault plane. We shall consider only shear
faults, i.e., no component of displacement normal to the fault plane, so that n; and
f: ave orthogonal vectors. The displacements due to a single-couple source whose
orieritation is specified by the vectors n. and f; are then

Ui = — U xM (5)

From equation (4) and the orthogonality condition, n.f; = O, the displacements
reduce to

dapus = Fo[nCA(3/RY) + (3iw/aR}) — (0'/’R)}
+ fiC.{(8/R%) + (3iw/aR’) — (&/d'R)} ,
— 7CiC{ (15/R%) + (15iw/aR’) — (64'/d'R) — (iu°/a’)}]

— FeinC{ (3/R") + (3iw/BR") — (o°/8°R)} @
+ J.Col (3/R°) + (3iw/BRy — (2°/6°R) — (1'/8)}
— 7C/C{(16/R°) + (15iw/BR") — (6'/6'R) — (i'/8")}]
where
F,= R exp (—iwR/a)
Fg = B exp (—iwR/B)
Cr =iy @
Ci = v

e A e
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TRANSFORMATION 70 CYLINDRICAL COORDINATES AND Wave FuNCTIONS

Equation (6) is now to be transformed into a cylindrical coordinate system

{r, z, ¢) with origin at the source.

[ — 2)" + (22 = @)

P
= ’
2= X3 — X3

cos¢ = (x — a')/r

In terms of these coordinates and the spherical distance, R, the direction cosines

s are
m = (r/R) cos ¢
Y2 = (r/R) sin ¢
7 = /R

and the cylindrical components of the displacement (u, , u,, u,) are

U = (B/r) (vita + vatto)
U = Uz
Uy = (B/7) (yruz — vsth)

The scalar products C; and C, become
C; = B7\(nfi cos ¢ + nfy sin ¢ + fiz)
Cw = R7'(rn1 co8 ¢ + 1y sin ¢ + ngz)
Using the orthogonality of f; and #;, their product may be written
CiCo = (r"/2R")[(fim — fuma) cos 26 + (fine + fm) sin 2¢]
+ (r2/RY[(fins + fom) cos & + (fimg -+ fane) sin ¢]

+ fnsl(2/R)* ~ (+/R)*/2)

It will be convenient to collect terms according to their dependence on the azimuth

angle, ¢, by wridng

0) Q 2):
Up = 'ur() + ur ) -+ ur(

®)

(9)

(10)

(11)

(12)
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RADIATION PATTERN OF RAYLEIGH WAVES 623

and similar expressions for u, and u, , where the terms with supersecript. ¢(0) in-
clude those independent of ¢, the (1) term are those depending on sin ¢ dnd cos ¢
and the (2) term are those depending on sin 26 and cos 2¢. When: this separation is
carried out, it is found that the coefficients of the various angular functions can
be expressed in terms of the derivatives up to the third order of the functions
F. and Fg with respect to » and , for example,

oF,/or = —(rFs/R}(R™* 4 tw/a)

I

OF./orde = (r2F./B)[(3/RD) + (3iw/aR) — (u/a®]

ete. The algebra is straightforward but tedious and we give only the final results

0;
47rpu,( )

dapu,® = cos ¢[(fins + Jsn) (8°F o802 — 8'F,[8r°02) — fina(w/B) 05/ 2]
(14)
+ sin ¢[(fans + fie) (9°F o/ 07°02 — 8°F/07°32) — fams(w/B) 0Fs/ 2]

dapu® = (1/2)[(fim — fam) c08.2¢ + (fing + fimy) sin 20][20°Fo/r*
‘ (15)
d 8%F /9102 + (0/c)’0F of0r — 20°Fg/on® — 8'Fs/0ra2" — 2(w/B) 0F s/ or]

drpu,® = (fsms/2) [39°F /02" 4+ (w0/ ) *0F o0z — 30°F /82" — 3(w/B) 9Fs/02] (16)

darpu," = cos @f(fins & fins) (8°F o/ 3r07 — 8°Fe/0r02") — fimy(w/B) 0Fs/or]

i ol o) (9o — SEaforsd) — fmal
dmous” = (1/2)[(fim — fumo) cos 2 + (fine + foru) sin 29|[26°F./or'0z
+ 8F/ 0 + (w/a)'oF )0z — 20'Fs)/ 02 — 8°Fa/0d — (w/B)*0Fs/d2] (18)
drpus® = (1/2) (fime — fam) (w/B)0F3/0r 1)
drpug® = cos ¢[(fams + fine) (3'F ofrorde — 8'Fy/rdrdz) — fuma(w/B)’0Fs/82)
— sin ¢[(fins + fom) (8°Fo/ror9z — 6°Fp/raroz) — fing(w/B)*aFs/dz)
drpus® = (1/2)1(fs + fis) cos 26 — (fma — fma) sin 26][—20°F . /or* on

— 99°F . Jorod” — 2(w/a) 0F «/dr + 20°Fs/ 01" -+ 20°Fs/ 182" + (w/B)20Fs/dr)

The above expressions for the displacements, although expressed in cylindrical
coordinates, still involve the spherical wave functions F. and Fg. In order to
complete the transformation into a ¢ylindrical wave representation we use the

(fsms/2)[30%F /0r0e® 4 (w/a)*(9F /dr) — 38°Fs/dros’] (13)
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Sommerfeld integral (Ewing, Jardetsky, and Press, 1957 pp 13 and 14) for F,
and Fg.

Fo = R exp (—iwR/a) = fo m Jolkr)e " (/v,) dle (22)
where
{+«/k2 — (o/®)? k> w/a
Vg =
iy (w/a)t — k2 k< w/a

Cal*cuiaﬁi‘ng the indicated derivatives and using the recursion reiations for the
Bessel functions, the various displacement components for = > 0 are as follows:

drpu,® = (fsms/2) j; uQ‘J 1(kr)[Bug €7 — (Bve + w'/a’va)e W dle (23)
daou,” = (fans/2) fo wJo(kr)[{Z(w/a)é — 31} e™ + 3Kk dk (24)
dapiy® = (1/2) (fami — fime)(w/B)’ fo " () () di (25)

4rpu, ™ = cos ¢[ (fing + famy) { j; vJ’o(kr) (€7 — ") dk

_ T—I"Z;n Ji(kr) (677 — 78 ? dk} -+ f1’n:«x(w/ﬁ)z‘/o“m Jo(kr)e™ "k dk:l

. (26)
+ sin ¢ [(fms + fun) { [ 1 — e a
- fo ) Jillr) (67 — &) iE dlc} + fams(w/B)? fo ) Jol(kr)e ™"k dk]
47rpuz(1) = COS ¢ l:(f1n3 + fs m) ‘/:“ Jl(kﬂ‘) (Vp e_vﬂz — Va 6_""‘2)’02 dk
+ fomsoB) | J1(k’7‘)e—""z’(702/‘1'a‘)dk]
(27)

+ sin ¢ :[(fgzns + fang) »/6‘ J1(kr) (vae™ — voe "=V dk

+ fana(w/B8)’ fo ) Jyer)e ™" (6% /vg) dk:l:
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drou,™ = cos ¢ [(fz‘ns + famp)r™ fo Ji(kr) (67 — ) dk

+ fans(w/B)" fo " Jolkr)e*k d’“:l. ~ sin ¢ '[(frna + fam)r™ (28)

) @ R ke ot/ [ doir)e dk]
dmpu,® = (1/2)[(fima — fame) cos 2¢ + (fing + fama) sin 24]

‘ [/: Julkr) {e7 (K /va) — ¢™*va}l” dke

—(2/r) _[ To(kr) {ra"'e ™ — v5 ¢ ") kad]k]‘%
4mpu.® = (1/2)(hm — fama) cos 26 + (fura + fums) sin 24]
. (30
Q /(; Jz(kr)(e-vpz - 6‘_“5),03 dk
drpus® = (1/2)[(frma + fama) cos 2¢ — (fimy — fome) sin 2¢)
-t(z/r)'fo Tollr) (va"'e™ — w56 ") dk (31)

+ (w/)* [ " Tkr)e (k) dk

The corresponding expressions for z < 0 may be obtained by changing the sign
of v, and vz and then reversing the sign of all terms.

These expressions have now been converted into the form of integrals of the
solutions of the elastic wave equations in cylindrical coordinates in the form given
by Sezawa (1931). Sezawa’s cylindrical wave functions may be written in the
form

drou,” (k) = cos ng[Fy"(2) kT us(kry — (n/r)Ju(kr}{Fi"(2) + F5"(2)}]

(32)
+ sin nglFy"* (&) kJwa(kr) — (n/r) Ju(kr){F5"(2) + F2*(2)}]
dmpu, " (k) = cos ng*Fa"(2) Fuller) + sin ngp-F3™*(2) I (br) (33)
dmpits™ (k) = sin ng[Fs* (kT psller) — (n/r) Jo(kr){F(2) + F5"(2)}]
(34)

— cos nglFs" () kJua(kr) — (n/r)Ju(kr){Fi"(2) + Fs"(2)}]

(20)

AL
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The functions F;"(z) and F,"(z) can be written in the form

Fi"(2) = Z,"(2) — Z4"(2) (35)
F"(2) = KZ."(2) — Zi(2) (36)
where Z," and Z," are solutions of A
AR AR (37)
5" — 2" =0 (38)

The function Fy"(2) satisfies the same differential equation (38) as Z,"(z).

We now take the origin of coordinates at the source with the 4z axis pointing
vertically downward into the medium. Let the depth of the source be A, so that
the free surface is at z = —h. In the
upward and downward travelling waves exist and the appropriate solutions of
equations (37) and (38) are of the form

Z" = Anie " - AL

Zlns —_

-region above the source, —h < z < 0, both

8 —~vaz 8 vaz
n1€ “ + n2l

Z" = B:Lle_m + B
Z" = B:Je_m + B
Fi™ = Crye™ + Cree™
Fy" = O™ + Crie’™

(39)

The values of the coefficients of the terms in ¢"* and ¢’ may be determined by
identifying terms in the integrated solution

ur(n) =

fo " w () di (40)

with the corresponding terms in the counterparts of equations (23) through (31)
for 2 < 0. The results of this are:

Ais

Bi.

G,
45
C
12
Ch
4

B:,

Ca

kfma[2(w/a)’ — 3K/ 2w,

= (fan — finz)w'k/28s

== k2(f1n3 + fang)

y = ffnsilp‘ + fa’ﬂ}llcz/ vg

= J“i'”a(@’/lg);2

= (fang — fing)k*/2v,

= (fng — fir)k/2

= (fine — fing)w'h/28's

A3e = E(fans + fina)

Bis = fangvs + fonok'/ve (41)
Cie = fona(w/B)*

A% = —(fing + fonn) /20,

B = —(fme + fam) /2

0% = —(fine + fum) 'k/26%

C -
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The. coefficiénts A%, ete. are then determined by the vanishing of the stress
components T, , T, Ty at the free surface. These are

-

1

Tzz AA + 2#01&;/33

Tzw"

]

w(du./0r 4+ du,/dz) (42
T = uldus/ds + du./rody

where A = 9u,/0r -+ U,/r <+ Ouy/rdp + du,/0z and N and u are the Lamé elastic
constants. Setting fhese stress components equal to zero at ¢ = —#% leads to the
following, set. of equations

(1 — ¥) (A58 + A5se™™) 4 yv3(—Boie”™ + Baye™™)

il

0
(v = 1)(Bue™ + Buoe™™) — (yra/W) (=A™ + Ane™") = 0 (43)
~Coy + Clae™ = 0
where v = 2(6k/ w)?, and a similar seét for t'e coefficients with superseript s. Solving
for A% , etc. we have
Aoy = [—g(k) A%e™" & 2y(y — 1)veBhoe "}/ (k)

c
nl

(2v(r ~ Dra/B)doae Pt — g(k)Buoe™™V/f(k)  (44)

c —2ugh e
w= € 0

" where

F&) = (v — 1)* = Varp/I°
g(k) = (v = 1)* + vvurs/

RapiaTioN PATTERN OoF RAYLEIGH WAVES

The part of the displacement field due to Rayleigh waves is the contribution to
the integral of equation (40) that arises from the singularity of the integrand at
the real root of f(k). By a transformation of the path of integration in the complex &
plane (Ewing, Jardetsky, and Press 1957, pp 132-135) this reduces to the negative
of the residue at the pole, k = «, where f(x) = 0. This may be obtained by mul-
tiplying the right hand sides of equations (32), (83), and (34) by — %, replacing
the Bessel functions by the correspending Hankel functions of the second kind,

H,"” (xr), dropping those terms of F » Fa s and F; that do not contain (k) in the
denomma,uor and replacing f(k) by f/(«) in the denominater of the remammg terms.
At this point we shall also drop the “near-field” terms in (n/r)H,® (kr), since
they are of order »~** and thus make a negligible contribution to the distant radia-

R R, A TN I T
S e b A Yo PN A o e S S LR pio e o £e
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tion field in comparison with the leading terms which are of order »* The re-
nainibg-significant. terms are then

4pu,™ = —ikHP 1 (0r)[G1(2) cos ng + Gy(2) sin ng)

dpus™ = —ikH,® ()G (2) cos nd + G5 (2) sin ng] (45)

Ug ar =0

where the functions G(z) are derived from the functions F(z) by applying the

operations deseribed above. Using equations (35), (36), (39), (41), (44), together
with f(x) = 0, explicit expressions for the values of these functions at. the free
surfaes (2 = —hj are asfollows:

G = Bewgfina/f' (I (v — D/re™ ~ {1 = 265/3a6™] (46)
" = WG/ ly — 1) (47)
G = 2y = D/f(0)]

(48)

d=lfm + S = 2ET + (v = D (fns + fmde ™/

G = 2¢(y — 1)/ ()]

(49)

[={fme + fima(l — 2/4)€™F + (v = 1) (fims + fim)e /]
G = i/ (y — 1) €50)
G = /(v — 1) (51)
G = [eys(fma — fama)/f (DU (y — D /v}e™ — ™ (52)
G = beyp(fing + Jo) /P (DI (v — D/9e™ — ] (53)
G = /(v — 1) (54)
G = /(v — 1) (55)

Replacing the Hankel functions by their asymptotic approximations
H,® () — (2/mxr)* exp (—ix + (inw/2) + in/4) (56)
the surface displacements reduce to
= Ak, 7, R) ™ Bifimal (1 — 2¢4'/30)D — (v — 1)/}
+ {2k(y — 1) /vvs} €08 ¢[— {form + fins(1 — 2/7)} + (v — 1)-(fins + fana) D/v]
+ {2¢(y — 1)/} sin ¢[—{fims + fans(1 — 2/7)} + (v — 1) (fina + fnz) D/v]
+ (v — 1)/9} — Dll(fim — finz) cos 2¢ + (fime + fom) sin 2] ]

U = Gyvally/k(y — 1) -(58)
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RADIATION PATTERN OF RAYLEIGH WAVES 629
where '
Alry 1y b) = {yve/aef (0} 2/mer}? exp. (—tkr — hwg) (59)
D = exp {—h(va = 7)) | ©0)

tr = w/k = phase velocity of Rayleigh waves

In interpreting the phase angles of the displacements in terms of the direction
of motion on the fault, we note that the normal veetor, n, may be drawn on either

Fia. 1. Convention for relation between f and n vectors and fault displacéement.

TABLE 1

VALUEs oF ' fi, fi, fs , CorRREsPONDING TO Vawmious Tyres oF Favrrs

i f2 fi
Type I~ ‘ ‘ T .

| Dipstip| Strike stip | - Dipstip | SHke | Dipap | Stk

Normal, right-lateral 0 -1 | ecosd 0 gin & 0
Normal, left-lateral 0 1 |  cossd 0 gin & 0
Reverse, right-lateral 0 —1 —eogd | 0 —gin & 0
Reverse, left-lateral 0 I | —~ecosd | O —sin & 0

gide of the fault. The sign convention adopted in equation (5) then requires that
the vector f be interpreted as the direction of F on the same side of the fault as that
on which » is drawn. Since in the immediate neighborhood of the source the direc-
tion of F is the same as that of the displacement, the relationships between f,
n, and the directions of motion on the fault plane are those shown in figure 1. If
we choose the x; axis to be along the strike of the fault.and the 2. axis in the direc-
tion of dip, with the directions chosen as shown in figure 2, and let n be drawn on
the hanging wall side of the fault, the components of n are ny = 0, n, = sin §,
ng = —cos & and the limiting values of the components of f for various types of
faults are those given in table 1.

DousrLE CourPLE SOURCE

It must still be considered an open question whether the majority of earthquakes
are best represented by a single-couple source model or by a double-couple with
zero resultant moment. To obtain the surface wave radiation pattern for the latter
case we note-from figure 1 that interchanging the vectois # and f produces a couple
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at right angles to. the original coiiple with moment of opposite sign. The appro-

priate solution for the double-couple source model may then be obtained from the

-single-couple solution by interchanging corresponding components of n a,nd b

and adding the results to the original solution. The result is
uy = 24 (k, 1, h) e " [Bifima (1 = 27 /367YD — (v — 1)/}
+ 2(0a/0) (D — 1){(fims + fsm) cos ¢ + (fims + fyms) sin ¢} (61)
— 4D — (v — /v (fim — fanz) cos2¢ + (finz + fmy) sin 29}]

X
3
Fie. 2. Orientation of axes with respect to fault.

Where we have made use of f(«) = 0 in deriving the coefficient of the terms in sin ¢
and cos ¢. The relation between u. and u, continues, of course, to be that given
by equation (58).

ErrEcT oF FAULT PROPAGATION

Ben-Menahem (1961) has treated the effect on the surface wave radiation pat-
tern of horizontal propagation of the fault fracture at finite velocity over a finite
distance. Although the case of horizontal propagation of the fracture is probably
the most common: one, his method can be readily extended to cover the general
case of an arbitrary direction of propagation. Let £ be the distance from the point
of initiation to the instantaneous position of the leading edge of the fracture meas-
ured in the direction of fracture propagation, and let » be the velocity of fracture
propagation, Let 7y, 20, ¢o be the cylindrical coordinates of the point. of observa-
tion with respect to the point of initiation of the fracture, and 7, 2, ¢ be the corre-
sponding coordinates with respect to the instantaneous position of the leading edge
of the fracture. Then, following Ben-Menahem we may write

b
wro, 20, ¢0) =5 [ utr,2,6) exp fio(t — &) dt) (62)

-
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where b is the length of the fault, u(r , %, ¢o) stands for any one of the displace-

ment components, and u(r, 2, ¢) is any one of the previously derived expressions

for & stationary point source. Let (I, , L, ls, be the Cartesian components of a
unit vector iii the direction of fault propagation. Physically ! must be normal to

50 that Im; = 0, but otherwise its direction is unrestricted: Then to terms of the.

first order in £ we have

r =1 — E(hcosd + L sing) + 0(£)

2 =2 — & (63)
¢i < (£/7) (I sincg — 1 cos ¢) + 0(&)

¢

Now consider the azimuth dependent. factor in u(r, 2; ¢). This contains terms of

the form. cos n¢ and sin n¢ and we have

oS 7y + (& — ¢o) d cos neo/dey + - - -
- cos gy — (&/7) (I sin ¢ — Iz cos ¢y m sin ngo + 0[(£/7)7

co8 N

with a similar expression for sin n$. Thus if we consider the radiation pattern at
distances such that » >> b, so that terms. of order £/r are negligible, we may treat
the azimuthal] terms in the integrand as constants in carrying out the integration
in equation (62). Similarly for the radial amplitude factor, 7, we have

= g (= o) A5 dro + - -
75 L+ (8/2r) (l cos ¢ + losin @) +-0{ (&/r0))]

and this factor may also be treated as a constant to the same order of approxima-
tion. Therefore the only factors that need to be considered in evaluating the integral
in equation (62) are the exponential radial and depth factors. Noting that at the
free surface 2 = —h and 2o = —hy, 80 that b = hy 4 &, the only factors that
that need be retained under the integral are those of the form

b
f exp (—dkr — hvg — i¢/v) dt = exp (—ixro — hovg)
fo
) (64)
. fo exp [ixE(l cos ¢p + Ip sin-¢o) — Ez vg — 1wE/v] dE

A similar expression with o replacing B8 also occurs through the quantity D that
appears in the coefficients of the azimuthal terms in equations (57) and (61).
Apart from a small change in the relative amplitudes of the azimuthal terms due
to this quantity, the main effect of source propagation is to multiply the expressions
for stationary sources by the factor

b
Plod) =t [ ¥ de = (¢ — 1)/ab (65)
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where.
a = ix(l cos ¢ + L sin ¢ — cz/v) — lLyws. (66)

The subseript indicating the origih at the inifial point of fracture has now been
dropped. In the case of horizontal propagation of the fault, I; = 0, and if we set

X = (xb/2){(cr/v) — lycos ¢ = lysin ¢} (67)

‘equation (65) reduces to the form given by Ben-Menahem

Pk, ¢) = (sin X/X) exp (—=iX). (68)

INITIAL PHASE

The phage arigles of the displacements u,.and u, obtained by setting r = 0 in the
expressions developed above are thie initial phases in the sense of the term: employed
by Aki (1960 a, b, ¢) and Brune (1961, 1962). They do not, of course, represent
the actual phases of the ground motion near the epicenter, since they do not in-
clude the near-field terms that make a negligible contribution at large distances,
but are the dominant terms at short distances. The initial phase of the far-field
terms does, however, have physical significance since it is the phase angle that
one obtains by applying the phase compensation methods of Aki or Brune to ob-
served data obtained at large distances.

Since the expressions given above refer to a source with ginusoidal time: de-
pendence, an additional initial phase factor is necessary if these expressions are to.
be applied to a particular Fourier component of a nonsinusoidal wave form. If the
time dependence of the force couple representing the source is F(£), with a Fourier
transform

+0 )
i) = [ Pwea
the correction that should be added to the initial phase is arg [f(w)]. In particular,
if F(2) is a unit step function, f(w) = 1/iw, and arg [f(w)] = —u/2 should be
added to the initial phase of all components.

In the case of Rayleigh waves on a homogeneous medium the quantity »; is

real and positive. From the definition of f(%) and making use of the fact that «

is the value of & such that f(«) = 0, it may be shown that
() = =2y’ (1 = B/’) + (1/7) — 2l/xly — 1)° (69)

Since y = 28%/cz’, and ¢ < @ for all homogeneous media, v > 2. Also §*/a* =

u/(N + 2u), which is necessarily <. Hence ¥*(1 — 8%/a’) > 2 and the term in

brackets is a positive real quantity. Therefore f/(x) is a negative real quantity and
the factor A (x, r, k) in equation (57) has a phase angle of .
For direct comparison of initial phase angles computed from equations (57),

-
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(58), and (61) with the initial phase in the sense of Brune, two additional correc-
tions are needed. Brune takes the positive sense of the z-axis as directed upward.
instead -of downward in accordance with the convention that we have used in the
present paper. This corresponds to a. change of = in the phase angle assigned to.
u, . He also makes a correction of — /4 to remove the phase advance at the source.
In the present theory this phase advance is represented by the factor exp (ri/4)
that occurs in the asymptotic expression for the Hankel function, -equation (56)
and must be removed for censistency with Brune’s definition.

In sumamary, if we let ¥.(¢) be the phase angle of the factor in bracketsin equa-
tions (57) or (61) that expresses the azimuthal dependence of the initial phase of
., the phase angle corrections that must be added to produce Brune's initial
phase, ¥ , are as follows:

TABLE 2
SUMMARY oF ILLUSTRATIVE CASES
& | ‘ s : Sfu - fe | I Sinéle—coupl‘e Double-couple
9 | 1.0 00 | —1.0 0.0 {0.0 | Fig.3 | Identieal with fig. 3
85 |0.9962 | —0.0872 | —~1.0 : 0.0 0.0 Fig. 4 —
80 | 0.9848 | —0.1786 | —1.0 0.0 0.0 . Fig. 5 -
70 | 0.9307 | —0.3420 1 —1.0 [0.0 |0.0 | Fig.6 —
45 | 0.7071 | —0.7071 | —1.0 ' 0.0 - 0.0 - Fig. 7 | Identical with fig. 3 with
: ‘ " scale reduced by 0.7071
0 0.0 - —1.0 =1.0. 0.0 - 0.0 - Fig. 8 Amplitude = 0
90 | 1.0 - 0.0 —0.7071 | 0.0 0.7071 | Fig. 11 | Identical with fig. 3 with
: . scale reduced by 0.7071
90 | 1.0 60 | 00 |00 |10 | Fig.12 | Amplitude =0
45 0‘.7071 —-0.707% | —0.7071 | 0.5 0.5 Fig. 13 | fig. 14
45 | 0.7071 | —0.707r [ O 1 0.7071 | 0. 7071 | Fig. 15 | fig. 16
Phase correction to
be added to ¢,(¢)
1} exp (—mi/4) factor in egs. (57) and (61) —x/4
2) Negative sign of f/(«) in A(x, 0, k) +w
3) Step source function —x/2
4) Conversion to vertical component (%, ~ %u,) +x/2
5) Change to opposite sign convention of z-axis +7
6) Phase advance at source —a/4

Net correctioﬁ —m/2
so that ¥s(s) = ¥r(9) — =/2

REPRESENTATIVE EXAMPLES.

Radiation patterns have been computed for a number of illustrative cases and
are summarized in table 2. The strike of the fault plane is taken as the reference
direction (¢ = 0) so that n; = 0 in all cases. The direction of dip is down to the
right and all figures refer to the case of zero focal depth (D = 1.0).
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SINGLE COUPLE, RT. LAT, STRIKE SLIP

F16. 3. Amplitude and initial phase (Brune) radiation pattern for right-lateral, strike-sli
motion on a vertical fault. Single-couple source model.

/ 3=85° \
/ oo \
180
SINGLE COUPLE, RT LAY, STRIKE SLIP
F1e. 4. Right-lateral, strike-slip motion on a fault. dipping 85°. Single-couple source mo
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SINGLE COUPLE, RT. LAT., STRIKE SL!P
Fig. 5. Right-lateral, strike-slip motion. on a fault dipping 80°. Single-couple source: model.
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SINGLE COUPLE, RT. LAT.,, STRIKE SLIP
Fra. 6. Right- lateral strlke-shp motion on a fault dipping 70°. Single-couple sourece model.
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SINGLE COUPLE, R, LAT, STRIKE SLIP
F1a. 7. Right-lateral, strike-slip motion on a fault dipping 45°. Single-couple source mode

o
SINGLE COUPLE, HORIZONTAL. FAULT
Fia. 8. Horizontal fault, upper side displaced in-direction ¢ = 180°, Single-couple source model.
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;“ F1a. 9. Amplitude of fault propagation factor for horizontal propagation at v = 8. A = b.
I
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180
\ °
PARAMETER = b/
Fia. 10. Amplitude of fault propagation factor for horizontal propagation atv = 8.1 < b.
- The effect of fault dip on the radiation pattern for the single-couple source model

of a right-band, strike-slip fault is illustrated in figures 3 through 8, which show
polar plots of relative amplitude and initial phase (Brune convention with step
v function source) as functions of azimuth. It will be noted that the quadrantal
symmetry with two nodal axes that exists in the case of a vertical fault. cvolves
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rather rapidly into a two lobed pattern with a single nodal axis as the dip decreases.
These figures refer to the case of & stationary source. To visualize the cffect of
fault propagation the amplitudes must be multiplied by the Ben-Menahem propa-
tion factor, which is shown as o funetion of azimuth in figures 9 and 10 for varions
ratios of fault length, b, to wave-length, A. The fault propagation velocity is taken
to be equal to the shear wave velocity, so that ¢/» = .9194, and horizontal propuga-
tion in the ¢ = 0 direction is assumed. For b/A < 0.125 the modification of the
stationary radiation pattern for smplitudes is small (<10%). For /N > .521,

180

SINGLE COUPLE, RT LAT., NORMAL, 45" PLUNGE

Fra, 11. Amplitude and initial phase (Brune) radiation pattern for 45° plunging motion on o
vertical fault. Single-couple source model.

additional nodal axes due to fault propagation are introduced, and as b/A hecomes
>1 the radiation becomes increasingly concentrated into two beams at cos ¢ =
¢/v, or ¢ = =23.16°. For the double-couple source model the Rayleigph wave radin
tion pattern is identical with the single-couple model in the case of strike slip on a
vertical fault. However, for dips less than 90° the double couple source continues
to give the same four-lobed pattern, the only difference being a decrense in ab-
solute amplitude in proportion to the sine of the dip angle. At zevo dip the ajuplisnde
becomes zcro (for zero {ocal depth only).

Tigures 11 and 12 show the patterns for the singlecouple source model i o
vertical fault with the direction of motion plunging 45° and 90% {dip-shp) respee-
tively, The effect is the same as chenging the dip of n strike-slip fanlt exeopi ibat
the pattern is rotated through §0°. n these eases also the paitert for (he double
couple source remains unchanged, but the amplitude deereises as the planee in.
crenges, and hecomed zero for pure dip-slip motion.
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;; SINGLE COUPLE, DIP SLIP
i F1a. 12. Dip-slip motion on a vertical fault. Single-couple source model.
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. ¥ SINGLE COUPLE, RT. LAT, NORMAL, f, =~c0s 45°
F1a. 13. Right-lateral, normal motion on a fault of 45° dip. Single-couple source model,
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¢}

270}

180
DOUBLE COUPLE f=~7071,f,=f =05
Fra. 14. Double-couple source model. Orientation parameters as in figure 13.

SINGLE COUPLE, ‘NORMAL, DIP SLIP
F16. 15. Normal, dip-slip motion on g fault of 45° dip. Singlé-couple source model
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Figure 13 shows the single-couple radiation pattern for 45° dip angle and dis-
placement vector making an angle of 45° with, the horizontal in the fault plane.
Figure 14 shows the coiresponding patterns for the double-couple: source. Althcugh
the amplitude patterris appear similar, the double-couple case actually has a pair
of minot lobes, too small to be shown in the figure, between the two major lobes.
The differences in initial phase distribution would distinguish between these two
cases.

The corresponding comparison between single and double-couple sources for dip-
slip motion on a fault of 45° dip is shown in figures 15 and 16. In this case also

270}

180
DOUBLE COUPLE f,=0, f,=fy= 707

Fra. 16. Double-couple source model. Orientation parameters as in figure 15.

the amplitude patterns are similar, but the initial phase patterns would distinguish
‘between the two source models.
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